
Abstract-Although many dynamic element matching
(DEM) digital to analog converters (DACs) have identical archi-
tectures, analyses of DEM DACs have been specific to the
DACÕs DEM technique.  In this paper, a particular DEM DAC
architecture is analyzed and criteria are developed for compar-
ing this architectureÕs performance when various DEM tech-
niques are applied to it.

I.  INTRODUCTION

Dynamic element matching (DEM) is a dynamic process
that can reduce the effects of component mismatches in elec-
tronic circuits.  DEM techniques dynamically rearrange the
interconnections of mismatched components so that the time
averages of the equivalent components at each of the compo-
nent positions are nearly equal.  If this dynamic rearrange-
ment is deterministic, the DEM technique is said to be deter-
ministic, and if the dynamic rearrangement of mismatched
components is stochastic, the DEM technique is said to be
stochastic.

Deterministic and stochastic DEM techniques have been
used to reduce the effects of component mismatches in digital
to analog converters (DACs) thereby improving their perfor-
mance [1; 2; 3; 4; 5; 6].  Because DEM techniques dynami-
cally rearrange components, deterministic DEM DACs can
be classified as time varying systems, and stochastic DEM
DACs can be classified as random systems.  Also, because
DACs contain mismatched components, DACs are nonlinear

systems which implies that deterministic and stochastic DEM
DACs can be classified as nonlinear time varying systems

and nonlinear random systems, respectively.  As a result,
analyses of DEM DACs have been specific to the DACÕs
DEM technique even though many DEM DACs have identi-
cal architectures.  In this paper, a particular DEM DAC archi-
tecture is analyzed and criteria are developed for comparing
this architectureÕs performance when various DEM tech-
niques are applied to it.

II.  A DEM FLASH DAC ARCHITECTURE

Fig. 1 shows the block diagram of a B bit flash DAC that
performs DEM by mapping a B bit binary input signal, x(n),
where  to 2B unit DACs [4].  In
Fig. 1, the natural binary converter transforms the input sig-
nal, x(n), where  into the B bit natural
binary signal, χ(n), where  which implies
that .  The modified thermometer coder
converts the natural binary coded signal, χ(n), into a 2B bit
modified thermometer coded signal, t(n).  The interconnec-
tion network connects the 2B bits of the modified thermome-
ter coded signal, t(n), to the 2B unit DACs.  Regardless of the
interconnection networkÕs control signal, c(n), the intercon-
nection networkÕs output, g(n), activates χ (n), or x(n)-x0, unit
DACs and deactivates the remaining 2B-χ(n), or 2B-x(n)+x0,
unit DACs.  If each activated unit DAC generates an analog
signal, a, and each deactivated unit DAC generates an analog
signal, d, the DACÕs quantization step sizes or code widths,
q, are the difference between a and d, that is qÊ=Êa-d which is
a constant.  The DACÕs output, y(nT), is the sum of all of the
unit DAC outputs, that is,

(1)

In practice, mismatched components between each of the
unit DACs prevent the analog outputs of the unit DACs from
having identical activated and deactivated values, respec-
tively.  As a result, the DACÕs quantization step sizes or code
widths are not constant, the DACÕs transfer characteristic is
nonlinear, and the DACÕs performance is degraded [7].  To
improve the DACÕs performance, the DEM DACÕs intercon-
nection network dynamically alters the mapping between the
input signal, x(n), and the mismatched unit DACs so that the
time averages of the activated and deactivated unit DAC out-
puts are nearly equal, respectively.

In this paper, a general analysis of the DEM DAC in
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Fig. 1.  A B bit DEM DAC.
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Fig. 1 is developed.  Using this analysis, the DACÕs mean
integral nonlinearity (INL), the variance of the DACÕs INL,
the DACÕs output signal to distortion ratio (SDR), and the
DACÕs output signal to noise plus distortion ratio (SNDR)
can be calculated and used as criteria to compare DEM DACs
using various interconnection networks and control signals.

III.  AN ANALYSIS OF DEM DACS

In Fig. 1, the DEM DACÕs output, y(nT), is a function of
t(n) which is a function of x(n), the interconnection network,
the interconnection networkÕs control signal, c(n), and the
activated and deactivated analog outputs generated by each of
the unit DACs.

To express t(n) as a function of x(n), let χk(n) represent
χ(n)Õs kth bit where χ1(n) is χ(n)Õs least significant bit (LSB).
If t(n) is represented by the vector, T(n), where

,

the superscript T denotes transpose, and t1(n) is t(n)Õs LSB,
then T(n ) is defined such that  and

.  Using the vector, T(n), to
represent t(n), t(n) and x(n) can be related by

.
To express the interconnection networkÕs 2B bit output

signal, g(n), as a function of x(n), let the vector, G(n), repre-
sent g(n) where

and g1(n) is g(n)Õs LSB.  Because G(n) is a function of c(n)
and t(n), which is a function of x(n), the interconnection net-
work can be represented by the transformation TG such that

. (2)

Regardless of the transformation TG and c(n),

, (3)
and thus, the interconnection network activates χ(n), or x(n)-
x0, unit DACs and deactivates the remaining 2B-χ(n), or 2B-
x(n)+x0, unit DACs.

To express y(nT) as a function of G(n), define the output,
yk(nT), of the kth unit DAC as

where ak and dk are the values of the activated and deacti-
vated kth unit DAC, respectively,

,

. (4)

, and .  As a result, the DACÕs output,
y(nT), can be written as

(5)
where ,  and 1  is a
2BÊx 1 vector of ones.  Substituting (3) into (5) and defining

 as the DACÕs average code width, which implies that
,  the DACÕs output, y(nT), can be written as

(6)

Because , (4) can be written as

,

which implies that

. (7)

Similarly, because ,

. (8)

Substituting (2) and (7) into (6), the DACÕs output can be
written as

. (9)
In (9), the term, , is similar to the ideal

DACÕs output in (1), and represents the DACÕs output when
all of the unit DACÕs activated and deactivated analog out-
puts are identically  and , respectively.  Therefore, the
last term, , in (9), is the DACÕs non-
linear transformation that describes the DACÕs INL.

When calculating performance criteria for the DEM DAC
in Fig. 1, it is necessary for the DC power in the DACÕs digi-
tal input, x(n), and the DC power of DACÕs undistorted out-
put, , to be equal.  Therefore, this paper
assumes that  which implies that

. (10)
where  represents the DACÕs transformation and 
represents the transformation of the DACÕs INL, that is,

.

IV.  PERFORMANCE CRITERIA FOR DEM DACS

In this section, the mean of the DACÕs INL, the variance
of the DACÕs INL, the DACÕs SDR, and the DACÕs SNDR
are determined for stochastic DEM DAC.  These perfor-
mance criteria can also be applied to deterministic DEM
DACs by replacing the probabilistic means and variances
with arithmetic means and variances, respectively.

To calculate the mean of a stochastic DEM DACÕs INL,
apply the expectation operator conditioned on the input sig-
nal, x(n), to the DACÕs output in (10) that is,
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 .(11)

In (11), the term, , represents the DACÕs output when
all of the DACÕs code widths are identically , and there-
fore, the second term, , in
(11) is the stochastic DEM DACÕs expected INL for a partic-
ular input, x(n), that is,

. (12)

Using (12), a stochastic DEM DACÕs INL variance,
, conditioned on x(n) can be calculated as

. (13)

which is also the DACÕs output variance, , condi-
tioned on x(n), that is,

. (14)

Two other criteria used to measure a DACÕs performance
are SDR and SNDR.  To calculate a stochastic DEM DACÕs
SDR, assume that the DACÕs analog output, y(t), is an
impulse train weighted by y(nT), that is, 

where δ(t) is the Dirac delta function.  Using this assumption,
the DACÕs average signal plus distortion power, Py, can be
written as

. (15)

Substituting (10) into (15),
(16)

where

and

.

In (16), the first term, Pyl, is the average output power of a
linear DAC with code widths  and the second term, Pye, is
the average power of the outputÕs conversion errors or distor-
tion.  Therefore, the DACÕs SDR is

. (17)

To calculate a stochastic DEM DACÕs SNDR, consider an
input, x(n), which can be written as

where s(n) is the signal component of the DACÕs input and
w(n) is an independent zero mean white noise component of
the DACÕs input.  Using (10), the DACÕs output, y(nT), can
be written as

(18)
Substituting (18) into (15),

(19)

where

and

where .  In (19), the first term, Pyl, is the
average output power of a linear DAC with code widths 
and the second term, Pyn+d, is the average power of the
outputÕs noise plus distortion.  Therefore the DACÕs SNDR is

. (20)

To calculate the mean of the INL, the variance of the INL,
the SDR, and the SNDR for a deterministic DEM DAC,
replace the probabilistic means and variances in (12), (14),
(17) and (20) with arithmetic averages and variances, respec-
tively.

IV.  STOCHASTIC DEM DACS

For stochastic DEM DACs, interconnection networks are
often chosen and controlled such that

. (21)

which implies that

   . (22)

For these types of stochastic DEM DACs, the performance
criteria described by (14), (17) and (20) can be simplified by
substituting (22) into these equations.  Substituting (22) into
(14),

. (23)

which is also the DACÕs mean squared INL for a particular
x(n).  Substituting (22) into (17), the DACÕs SDR is

, (24)

and substituting (22) into (20), the DACÕs SNDR becomes

. (25)
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IV.  EXAMPLE

Consider a six bit linear DAC that has a full scale dithered
sinusoidal input with a frequency of 313π/2048 radians/sam-
ple.  The dither sequence is a strictly white sequence with a
triangular probability distribution function supported on

.  Fig. 2(a) shows the power spectral density (PSD) of
the simulated DACÕs output.  The PSD was obtained by
averaging 40 periodograms each corresponding to 212 sam-
ples of the dithered sinusoid input sequence.  For this exam-
ple, consider the DEM DAC in Fig. 1 where the unit DACs
have linear gradient errors that vary linearly from +5% to
-5% of an LSB and uniformly distributed random errors that
are uniformly distributed between +2% and -2% of an LSB.
Fig. 2(b) shows the PSD of the nonlinear DACÕs output.
This PSD was also obtained by averaging 40 periodograms
each corresponding to 212 samples.

For this example, the interconnection network is the
Benes network in [5] where c(n) is an independent white
uniformly distributed stochastic signal.  Fig. 2(c) shows the
PSD of this stochastic DEM DACÕs output.  For this network
and control signal, it can be shown [5] that

,

which implies , and thus the DACÕs aver-
age transformation can be described by (21).  It can also be
shown [5] that

where  is the 2B by 2B identity matrix and  is the 2B

by 2B ones matrix.  Using (24), the DACÕs SDR is 41.9 dB,
and using  samples, the DACÕs experimental SDR is
41.9 dB.  Assuming the DACÕs input, x(n), has the form,
s(n)+w(n), where s(n) is the unquantized sinusoidal input
without dither and w(n) is the signal that includes quantiza-
tion and dither noise, the DACÕs SNDR is 31.5 dB using
(25).  Using  samples, the DACÕs experimental
SNDR is 31.5 dB.

V.  SUMMARY

In this paper, the DEM DAC architecture in Fig. 1 is ana-
lyzed and described by the transformation in (10).  Using
(10), expressions for the DACÕs mean INL, the variance of
the DACÕs INL, the DACÕs SDR, and the DACÕs SNDR
were developed and are described by (12) , (13), (17) and
(20), respectively.  The expressions in (13), (17)  and (20)
were further simplified in (23), (24) and (25) for DACÕs that
have zero mean INL.  Using these criteria, a stochastic DEM
DAC that uses a Benes interconnection network is analyzed,
and theoretical results are compared to experimental simu-
lated results.

Fig. 2.  Power spectral density for (a) linear six bit DAC, (b)
nonlinear six bit DAC and (c) stochastic Benes network DEM DAC.

REFERENCES

[1] R.J. Van de Plaasche, ÒDynamic element matching for high accuracy
monolithic D/A converters,Ó IEEE J. Solid-State Circuits, vol. SC-11,
pp. 795-800, Dec. 1976.

[2] B.H. Leung and S. Sutrarja, ÒMultibit ∆ΣADC incorporating a novel
class of dynamic element matching techniques,Ó IEEE Trans. Circuits
and Systems II: Analog and Digital Signal Proc., vol. 39, no. 1, pp.
35-51, Jan. 1992.

[3] R.T. Baird and T.S. Fiez, ÒLinearity enhancement of multibit ∆Σ A/D
and D/A converters using data weighted averaging,Ó IEEE Trans.
Circuits and Systems II: Analog and Digital Signal Proc., vol. 42, no.
12, pp. 753-762, Dec. 1995.

[4] L.R. Carley, ÒA noise shaping coder topology for 15+ bits converters,Ó
IEEE J. Solid-State Circuits, vol. SC-24, pp. 267-273, 1989.

[5] I. Galton, P. Carbone, ÒA rigorous error analysis of D/A conversion
with dynamic element matching,Ó IEEE Trans. on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 763-772,
1995.

[6] J.W. Bruce and P. Stubberud, ÒGeneralized cube networks for imple-
menting dynamic element matching digital-to-analog converters,Ó
Proc. of the Midwest Symposium on Circuits and Systems, pp. 522-525,
Aug. 1998.

[7] P. Stubberud and J.W. Bruce, ÒAn analysis of harmonic distortion and
integral nonlinearity in digital to analog converters,Ó Proc. of the Mid-
west Symposium on Circuits and Systems, August 1999.

Presented at the 42nd Midwest Symposium on Circuits and Systems Aug. 8-11, 1999

484

P
SD

  (
dB

)

π/2 π0
frequency (rad/sample)

-60

-40

-20

0

-10

-30

-50

-70

P
S

D
  (

dB
)

(c)

π/2 π0
frequency (rad/sample)

-60

-40

-20

0

-10

-30

-50

-70

P
S

D
  (

dB
)

(b)

π/2 π0
frequency (rad/sample)

-60

-40

-20

0

-10

-30

-50

-70

P
S

D
  (

dB
)

(a)

40 212×

40 212×

12 BI2 B

  
E x n

n n n n
T

B B

B

B BB BT TG G 1 I( )
( ) ( ) ( )  ( )[ ] =

−[ ]
−( ) +

−[ ]
−( )

χ χ χ χ1

2 2 1

2

2 2 12 2

  E x nINLT ( )[ ] = 0
  
E x n

n
BTG 1( )

( )[ ] = χ
2

( , )−q q


